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The flow induced by a localized droplet of soluble surfactant on the surface of a thin 
film is analysed, motivated by an interest in the interaction between inhaled droplets 
and the lung’s thin liquid lining after an aerosol lands on its surface. The spreading 
is driven by gradients of surface tensip and results in flow of the droplet and 
underlying liquid film. This induced floi? field plays an important role in the 
transport of dissolved species from the droplet, through the film, and to the tissue for 
absorption. 

Evolution equations for the film thickness, surface and bulk liquid concentrations 
are derived using lubrication theory, since the depth of the film is much smaller than 
the characteristic radius of the droplet. Solutions are obtained numerically using the 
method of lines for a variety of surface PBclet numbers. 

We find that the effect of solubility is to decrease both film disturbances and 
surface concentrations, and to induce an absorption-driven backflow. In  addition, 
there is a gravity-driven backflow from hydrostatics. At large surface PBclet 
numbers, large film disturbances are obtained and more surfactant is able to diffuse 
across the rigid permeable wall, while surface diffusion causes more rapid spreading 
and decreases film disturbances. Gravity acts as a restoring force by creating a bi- 
directional flow, and hence disenhances the vertical flux of surfactant across the 
air-liquid interface. This model may have implications for the delivery of drugs by 
aerosol inhalation. 

1. Introduction 
The aim of this paper is to develop a theoretical model for the flow induced by a 

localized droplet of soluble surfactant on the surface of a thin film. This problem is 
motivated by an interest in the interaction between inhaled droplets and the lungs’ 
thin liquid lining, and the transport of materials contained in the droplet. In the 
lower respiratory system, the airways and alveoli are covered with a thin liquid 
lining. Surface-active materials which are believed to be continuously produced by 
cells lining the alveoli (West 1985; Scafpelli 1988) reduce the surface tension of the 
air-liquid interface and lessen the large external forces that tend to cause alveoli to 
collapse. A common disease in premature nmnates is respiratory distress syndrome 
which is due to an abnormally high surface tension of the lungs’ liquid lining. One 
possible way to treat this disease is to deliver surfactant exogenously (Enhoring et al. 
1985; Merritt et al. 1986). Substances such as medications or toxins can ‘piggyback’ 
onto droplets and reach sensitive regions of the lung (Goetz 1961) by diffusing 
through a very thin and viscous liquid film. There are a variety of other flows driven 
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by surface-tension gradients which have applications in engineering. These include 
coating processes (Ruschak 1985) and crystal growth (Ostrach 1983). For example in 
coating processes, it is of considerable importancc to understand the effects of 
contaminants (either material or thermal) which can result in non-uniform films. 

Borgas & Grotberg (1988)? Gaver (1988) and Gaver & Grotberg (1990) investigated 
the spreading of insoluble surfactant and considered the effects of surface- tension 
gradients, gravitational forcing and surface diffusivity. They found : (i) that surface- 
tension-induced convection gives rise to film disturbances that increase the film 
thickness near the surfactant’s leading edge while thinning the film in the central 
region ; (ii) that  surface diffusion leads to more rapid spreading and decreases film 
disturbances; and (iii) that gravity acts as a restoring force by creating bi-directional 
flow in the form of a ring vortex. We will follow their methods for the corresponding 
soluble-surfactant problem. The flow field is governed by Stokes equations since 
inertia terms are small. Furthermore, lubrication theory is used since the film 
thickness is small compared to the droplet radius. At the interface, there is a coupling 
between the bulk and surface concentrations of the surfactant that is described by 
the Langmuir isotherm (Horn & Davis 1975; Probstein 1989). The rigid wall on 
which the film lies is assumed to be totally permeable to surfactant. This simple 
condition could be appropriate in cases where surface-active materials are 
transported through thin films and absorbed by the surrounding tissue before being 
carried away by the microcirculation. A non-uniform initial surface concentration 
distribution is chosen, which induces fluid motion and transport within the initially 
flat film. 

In $2, the governing equations for fluid motion and transport are established, and 
the evolution equations for the film thickness and the surface and bulk concentrations 
of the surfactant are derived. Results for the time evolution of the film thickness and 
the surfactant concentration are given in $3. Results concerning the effects of soluble 
surfactant on transport are presented in $4 and conclusions are given in $ 5 .  

2. Governing equations 
2.1. Fluid mechunics of the thinJilm 

The Stokes flow of a thin liquid layer induced by the axisymmetric spreading of a 
soluble surface-active material is analysed in this section. As in Gaver & Grotberg 
(1990), the film is bounded below by a rigid wall a t  z* = 0 and above by the interface 
position z* = H*(r*, t * ) ,  such that the axes ( r* ,  8, z * )  are fixed a t  the rigid wall. We 
apply the lubrication approximations to axisymmetric flow with velocity com- 
ponents (u*, 0, w*) since the characteristic lengthscale of the film thickness, H , ,  is 
much smaller than the initial radius of spreading surfactant, R,. The governing 
equations are non-dimensionalized by letting 

r* = R, r ,  z* = H ,  z ,  P* = (S /H, )p ,  u* = u1 u, w* = E U ~  w, 1 (2.1) 
g* = C,+S~(T), r* = r,r, t* = (Ro/ul). 1 

where u ( r )  is the surface-tension, a function of the surfactant concentration, 
S = u, -urn is the spreading parameter, u, is the surface tension of the surfactant-free 
surface (r = 0) and 8, is the surface tension of an interface saturated with surfactant 
(r = 1). The velocity scale, u l ,  is obtained by scaling the tangential stress condition 
at the interface, and is given by u1 = eS/,u, where E = H,/R, < 1 (Gaver 1988). The 
reduced momentum equations in the radial and vertical directions are given by 
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where G = p H i g / S  is the gravitational parameter. Since the fluid is incompressible, 

The boundary conditions are no slip a t  the rigid wall 

u = w = O  a t  z = O ,  (2.4) 
and a t  the interface we apply the following tangential stress condition: 

au aa 
a Z  ar 
_ -  - -+O(e2) ,  P = O ( 2 )  at z = H .  (2 .5)  

Discontinuities in pressure across z = H due to surface-tension forces are O(e2) and 
are therefore neglected. 

The momentum equation in the radial direction, (2.2), is integrated twice to yield 
a t  leading order 

where the pressure, P ,  is given by 

P = G ( H - 2 ) .  

The radial flow rate is defined by 

and conservation of mass then requires that 

i3H l a  
-+--(r&,)  = 0, 
at r a r  (2.9) 

yielding an evolution equation for the film thickness which is coupled to a(Q. 

2.2. Conservation equations for the surfactant 

Gaver & Grotberg ( 1990) considered the insoluble-surfactant problem, thus allowing 
for surfactant to diffuse and be convected along the interface. For the soluble- 
surfactant case, the surfactant may also diffuse across the air-liquid interface. The 
concentration in the bulk phase, C, is scaled as follows: 

C 

Y 
C* = "C, (2.10) 

where C,  is the maximum surfactant concentration in the bulk that can exist in 
equilibrium with the monolayer and y is a solubility coefficient. On applying the 
lubrication approximations, the conservation equations a t  the interface and in the 
bulk phase are given by 

and 

- ar = - ( - + - ~ - - - ( r u s ~ - - - + 0 ( e z )  1 a 2 r  i a  1 a K ac a t  z = H (2.11) 
at Pe, ar2 r ar r a r  Pe, az 

ac u a  ac i a2c 

at r a r  az Pe, az2 
-+--(rC)+w- = --+O(e2), 0 -= z < H ,  (2.12) 
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where u, is the surface radial velocity, Pe, = u1 R,/D,  and Pe, = E U ~  H,/D, denote the 
surface and bulk PBclet numbers, K = C, H,/(yT,,,), and D, and D, are the surface 
and bulk molecular diffusivities. The following boundary conditions on C will be 
considered : 

C = 0  a t  z = 0 ,  r=- a t  Z + H .  (2.13) 

The first boundary condition implies that the rigid wall is totally permeable. This is 
relevant to situations where the surfactant is absorbed into the tissue and reaches the 
nearby microcirculatory system. The second boundary condition, (2,13), describes a 
coupling between the bulk and surface concentrations of the surfactant (Horn & 
Davis 1975) which is usually known as the Langmuir adsorption isotherm in reaction 
kinetics (Walas 1989). 

In  many pulmonary applications, the bulk PBclet number is much smaller than the 
surface PBclet number since the molecular diffusivities, D, and D,, are of the same 
order. Therefore, we will assume that Pe, < 1 since Pe,/Pe, = e2D,/D,. Then the left- 
hand side of (2.12) is negligible and the solution for C is linear in z such that 

1 f C  

(2.14) 

to  leading order. This simplification has the effect of decoupling (2.11) and (2.12), 
since aC/& in (2.11) depends only on r and H .  In addition, this approximation 
implies that  initially there is surfactant in the bulk phase. This condition could be 
appropriate in an experimental set-up where a restraining collar containing 
surfactant is placed in a film, and the surfactant is allowed to equilibrate before the 
collar is removed (Gaver 1988). 

2.3. The evolution equations 

A system of coupled, nonlinear equations that describe the evolution of the film 
thickness, H ,  and the surfactant concentration, T ,  are obtained by combining the 
conservation equations derived in the previous section. In  the small bulk PBclet 
number limit, equation (2.11) reduces to 

where a = K/Pe, is the solubility parameter. The surfactant is assumed to  be highly 
soluble across the interface (y  % i), so that a remains finite in the limit Pe, --f 0. Note 
that the insoluble surfactant case studied by Gaver & Grotberg (1990) is recovered 
by setting a = 0. The kinematic boundary condition, (2.9), yields 

(2.16) 

where the surface-tension equation of state is the same as that used by Sheludko 
(1967), Borgas & Grotberg (1988) and Gaver & Grotberg (1990), namely 

W) = (p+ 1) (1+W)r)r3-p,  (2.17) 

where O(p) = ((p+ 1)//3);- 1 ,  and ,8 = a,/S is the ratio of minimum surface tension 
to the spreading parameter. 
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The appropriate boundary conditions on r and H are 

(2.18) 

and T + O , H + l  as r+m. (2.19) 

Initial conditions are also required. The initial surfactant distribution is assumed 
to be a smoothed disk of surfactant, and is described by the following function: 

r ( r ,  0) = irmax [ 1 - tanh (a(r - T , ) ) ] ,  (2.20) 

where a controls the initial steepness of the surface concentration gradients and ro 
controls the location of the front. Large values of ar, are used so that the symmetry 
conditions a t  r = 0, (2.18), are satisfied within numerical tolerance. r,,, is chosen to 
be less than 1 so that the solubility term in (2.15) is not singular. The film is assumed 
to be initially flat : 

H(r,O) = 1. (2.21) 

The stream function was also calculated in order to obtain the streamline patterns 
for the various flows that will be computed in the next section. Since the flow is 
axisymmetric, the stream function is given by 

where 

(2.22) 

(2.23) 

3. Results 
The system of evolution equations, (2.15)-(2.16), derived in the previous section, 

are solved numerically for f ( r ,  t ) and H(r, t )  using the method of lines (Holt 1984) for 
a wide range of parameter values and different values of time. The following 
parameter values which are pertinent to the small airways of the lungs were chosen 
for illustrative purposes. If H ,  = 0.001 cm, R, = 0.01 cm, p = 5 cP, S = 50 dynes/cm 
and D, = cm2/s, then Pe, = 100, G < 1 and one dimensionless time unit is 
equivalent to 0.01 s .  So the surface PBclet number is chosen to be 100, a = 0.001, 
/3 = 5, G = 0, a = 10 and ro = 1. Gravitational effects can be important in 
experimental set-ups (Gaver 1988). Figures 1 (a)  and 1 ( b )  show the time evolution of 
the film thickness and the surfactant concentration. In  figure 1 (a) ,  H is plotted as a 
function r for various times. It shows the propagation of a moving front which 
initially grows from the uniform state due to large surface-tension gradients (not 
shown), and then decreases as the gradients become small, with a thinning of the 
region immediately behind the front. This is consistent with results obtained by 
Gaver & Grotberg (1990). In  figure l ( b ) ,  the initially steep surfactant gradients 
disappear as the droplet spreads outward. After a long period of time, t > 400, r is 
no longer a monotonically decreasing function of r ,  but develops a local maximum. 
This is because H becomes small behind the front and consequently the vertical 
diffusion gradients become large, taking more mass from the interface. From (2.6) 
and (2.7) we see that, for G = 0, the radial velocity is 
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FIGURE l.(a) Film thickness and ( b )  surfactant concentration profiles a t  t = 200 (-), 400 
(---), 600 (---), 800 (----) 1000 (.....-) . Pe, = 100, a = 0.001, /l = 5. G = 0, a = 10 and r,, = 1. 
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FIGURE 2. Streamline patterns demonstrating the effects of soluble surfactant a t  (a) t = 200, 
( 6 )  t = 1000. Pe, = 100, a = 0.001, p = 5 ,  G = 0, a = 10 and r,, = 1. 

From (2.17),  au/W < 0, so (3.1) implies that for all z we expect outward radial flow 
when aI'/ar < 0 at small t .  This behaviour is demonstrated in figure 2 ( a )  which shows 
the corresponding streamline patterns a t  t = 200. Since figure l ( 6 )  demonstrates an 
extremum in T ( r ,  t )  for r > 0 a t  large enough t ,  we can anticipate a division of the flow 
regime into regions of outflow and backflow (figure 2 b ) .  This surface-tension- 
gradient backflow phenomenon is not observed in t,he insoluble-surfactant case. In  
the presence of gravity, G + 0, there are modifications of this backflow, discussed 
below, and competition with hydrostatically induced backflow. 
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Surfactant concentration profiles for Pe, = 1, 10, 100, 1OOO. a 
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FIGURE 4. Streamline patterns demonstrating the effects of large Pe, (= 1000) 
at (a) t = 200, ( b )  t = 500. 

The effects of the surface PQclet number are shown in figure 3. The parameter 
values are identical to those for figure 1 except that  Pe, is allowed to vary. Gaver & 
Grotberg (1990) showed that increasing Pe, leads to  larger film disturbances. A well 
demarcated front and a thinning in the region behind i t  are observed at very large 
PBclet numbers. As shown in figure 3, the rate of surfactant spreading decreases with 
increasing Pe, since this is consistent with decreasing D,. As in Gaver (1988), 
analytical solutions for small Pe, are in good agreement with the numerical results. 
In the case of Pe, = 1000, a more complicated phenomenon develops. T(r, t )  now has 
two local extrema for r > 0 which will cause the radial convection to have three 
regimes. This evolution is illustrated in figure 4 ( a ,  b) .  For small enough time there 
is only outward flow (figure 4a), and for large enough time the pattern divides into 
two outward flow regions separated by an inward flow region. The local minimum in 
r, near r = 3, apparently is related to the local minimum in H ,  also near r = 3. 

The influence of the gravitational parameter, G ,  on the flow field can be seen in 
figures 5 and 6. The parameter values are identical to those in figure 1 except that 
G is allowed to vary. We find divisions of radial flow, bounded by streamlines which 
intersect the surface where u, = 0, as when G = 0 above. If G is small enough then 
the same sort of behaviour as in the case where G = 0 and u + 0 is observed, that is 
W / a r  changes sign resulting in a surface-tension-induced backflow similar t o  that 
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FIQURE 5. Streamline patterns demonstrating the effects of weak gravitational forcing at 

(a)  t = 70, ( b )  t = 350. Pe, = 100, a = 0.001, /3 = 5, and G = 0.05. 
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FIQURE 6. Streamline patterns demonstrating the effects of strong gravitational forcing at 
(a )  t = 0.25, ( b )  t = 3. Pe, = 100, a = 0.001, /3 = 5, and G = 1 .  

shown in figure 2. However, since in this case the velocity is a quadratic function of 
z ,  (2.6), the dividing streamline between radially outward and backward flow is a 
curve instead of a vertical line. Streamlines for this case are shown in figure 5(a ) ,  ( b ) .  
If G is large enough the layer does not thin as much and r is a monotonic decreasing 
function of 7 .  Gaver & Grotberg (1990) showed that, in the insoluble case, flow 
reversal occurs only if gravitational effects are included, since with time, hydrostatic 
forces become larger than surface-tension gradients. Figures 6 (a) ,  (b)  shows the 
streamlines for a case where G = 1 and a = 0.001 at t = 0.25,3. After a short period 
of time, the flow is radially outward (figure 6 a ) ,  but with time a vortex develops a t  
the lower wall (figure 6 b )  which eventually engulfs the layer behind the moving front. 
In  this case the flow is bi-directional as opposed to the absorption-induced backflow 
which is observed when G is very small. Flow fields consisting of ring vortices and 
adsorption-induced backflows are not possible because u is quadratic in z. 

4. Transport 
In this section we examine the influence of the parameters 01, Pe,, and G on the 

amount of surfactant being absorbed by the rigid wall and the rate a t  which 
surfactant spreads on the thin liquid film. Having some knowledge of the effects of 
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FIGURE 7 .  Dose versus t .  ( a )  a = 0, 0.001, 0.01, 0.1, ( b )  Pe, = 1, 10, 100, 1000, (c) G = 0, 0.1, 1. 

solubility, molecular diffusivity and gravity, for example, could be important in 
certain applications such as drug delivery by aerosol inhalation. 

We define the dose, D(t) ,  as 

D(t) = 2 n [ r ( r ( r , O ) - T ( r , t ) r d ~ d t ,  0 0  

Figure 7 ( a )  shows that D increases less rapidly for smaller values of a, as expected. 
Increasing G slows down the amount of surfactant being delivered (figure 7c)  since 
gravity acts as a restoring force thereby decreasing the vertical flux of surfactant 
across the air-liquid phase. The amount of surfactant delivered is enhanced by 
increasing Pe, because of larger film disturbances and the retention of the initially 
steep gradients at higher Pe, (figure 76) .  

One measure of how far the surfactant spreads is given by the droplet radius, R,. 
It is defined as follows: 

R, = r such that r ( R , , t )  < e,, (4.2) 

where e, = lop6. The effect of a on R, is shown in figure 8. Increasing a slows down 
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FIGURE 8. Droplet radius versus t .  a = 0, 0.001. 0.01. 0.1. 

the propagation of the concentration front. Eventually, R, decreases since a 
backflow is generated for the soluble surfactant’ cases and drops down to zero when 
there is no surfactant left on the surface. Another relevant parameter is the position 
of the convection front, R,. For fixed G,R, > R,, which is in agreement with 
experiments of Gaver & Grotberg (1992). This distinction is caused by the welling of 
fluid near the droplet’s leading edge. 

5. Conclusions 
We have modelled the spreading of a droplet of soluble surfactant on a thin viscous 

film driven by surface-tension gradients. surface and bulk diffusion and gravity. The 
ensuing motion and deformation of the liquid lining play an important role in the 
transport of dissolved substances from the droplet, through the lining and into the 
tissue for absorption. The problem considered here represents a starting point for 
analysing more complex transport models with applications in pulmonary and 
aerosol dynamics. 

Evolution equations describing the variation of surfactant concentration and film 
thickness were derived using lubrication theory. These could be decoupled from the 
equation of surfactant concentration in the bulk by taking t’e,  -+ Pe,. 

The results of this study demonstrates a strong dependency of the film thickness, 
surfactant concentration and the dose of surfactant delivered on the surface PQclet 
number, Pe,, the gravitational parameter, G, and the solubility parameter, a. As in 
Gaver & Grotberg (1990), very large film disturbances are obtained at large Pe, if 
gravitational effects are neglected, surface diffusion leads to more rapid spreading 
and smaller disturbances, and gravity also dampens disturbances by creating a bi- 
directional flow. These can have significant effects on the mass transport of 
surfactant from the interface into the underlying tissue. As shown in figures 7 ( b )  and 
7 ( c ) ,  the amount of surfactant delivered is enhanced by increasing Pe, and decreasing 
G because H becomes small enough that vertical diffusion gradients become large. 
However, increasing Pe, decreases the rate at which surfactant spreads and this may 
be undesirable in certain applications. The dose of surfactant, D ( t )  saturates very 
quickly for a > 0.01 (figure 7 a ) .  This may be inefficient if medications in the form of 
surface-active materials are to reach only the morc distal regions of the lower 
respiratory system. 
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The solubility parameter, 01. also has a strong cffcct on the flow field and the dose. 
A backflow can result after a long period of time cvcn for cases where gravitatiomal 
effects are neglected (figure 2). This is due to a thinning of the liquid layer when 
C: = 0 which results in big changes in the bulk-concentration gradients, X/&, near 
the minimum value of H ( r ,  t ) ,  and is different from the vortex that develops on the 
lower wall when gravitational effects are incl~ded.  For moderate Pe, and G = 0. there 
is a bounding streamline dividing outward and inward flow, but for sufficiently large 
P e , ,  as shown in figure 3, a backflow region develops between two outward flow 
regions since the surface concentration of surfactant develops two extrema. 
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